Predicting the need for a replan in oropharyngeal cancer: A radiomic, clinical, and dosimetric model

Author:

Chinnery Tricia A.12,Lang Pencilla3,Nichols Anthony C.4,Mattonen Sarah A.123

Affiliation:

1. Department of Medical Biophysics Western University London Ontario Canada

2. Baines Imaging Research Laboratory London Ontario Canada

3. Department of Oncology Western University London Ontario Canada

4. Department of Otolaryngology Western University London Ontario Canada

Abstract

AbstractBackgroundPatients with oropharyngeal cancer (OPC) treated with chemoradiation can experience weight loss and tumor shrinkage, altering the prescribed treatment. Treatment replanning ensures patients do not receive excessive doses to normal tissue. However, it is a time‐ and resource‐intensive process, as it takes 1 to 2 weeks to acquire a new treatment plan, and during this time, overtreatment of normal tissues could lead to increased toxicities. Currently, there are limited prognostic factors to determine which patients will require a replan. There remains an unmet need for predictive models to assist in identifying patients who could benefit from the knowledge of a replan prior to treatment.PurposeWe aimed to develop and evaluate a CT‐based radiomic model, integrating clinical and dosimetric information, to predict the need for a replan prior to treatment.MethodsA dataset of patients (n = 315) with OPC treated with chemoradiation was used for this study. The dataset was split into independent training (n = 220) and testing (n = 95) datasets. Tumor volumes and organs at risk (OARs) were contoured on planning CT images. PyRadiomics was used to compute radiomic image features (n = 1218) on the original and filtered images from each of the primary tumor, nodal volumes, and ipsilateral and contralateral parotid glands. Nine clinical features and nine dose features extracted from the OARs were collected and those significantly (p < 0.05) associated with the need for a replan in the training dataset were used in a baseline model. Random forest feature selection was applied to select the optimal radiomic features to predict replanning. Logistic regression, Naïve Bayes, support vector machine, and random forest classifiers were built using the non‐correlated selected radiomic, clinical, and dose features on the training dataset and performance was assessed in the testing dataset. The area under the curve (AUC) was used to assess the prognostic value.ResultsA total of 78 patients (25%) required a replan. Smoking status, nodal stage, base of tongue subsite, and larynx mean dose were found to be significantly associated with the need for a replan in the training dataset and incorporated into the baseline model, as well as into the combined models. Five predictive radiomic features were selected (one nodal volume, one primary tumor, two ipsilateral and one contralateral parotid gland). The baseline model comprised of clinical and dose features alone achieved an AUC of 0.66 [95% CI: 0.51–0.79] in the testing dataset. The random forest classifier was the top‐performing radiomics model and achieved an AUC of 0.82 [0.75–0.89] in the training dataset and an AUC of 0.78 [0.68–0.87] in the testing dataset, which significantly outperformed the baseline model (p = 0.023, testing dataset).ConclusionsThis is the first study to use radiomics from the primary tumor, nodal volumes, and parotid glands for the prediction of replanning for patients with OPC. Radiomic features augmented clinical and dose features for predicting the need for a replan in our testing dataset. Once validated, this model has the potential to assist physicians in identifying patients that may benefit from a replan, allowing for better resource allocation and reduced toxicities.

Funder

London Health Sciences Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3