Screen‐space Streamline Seeding Method for Visualizing Unsteady Flow in Augmented Reality

Author:

Kang Hyunmo1,Han JungHyun1ORCID

Affiliation:

1. Korea University Seoul South Korea

Abstract

AbstractStreamlines are a popular method of choice in many flow visualization techniques due to their simplicity and intuitiveness. This paper presents a novel streamline seeding method, which is tailored for visualizing unsteady flow in augmented reality (AR). Our method prioritizes visualizing the visible part of the flow field to enhance the flow representation's quality and reduce the computational cost. Being an image‐based method, it evenly samples 2D seeds from the screen space. Then, a ray is fired toward each 2D seed, and the on‐the‐ray point, which has the largest entropy, is selected. It is taken as the 3D seed for a streamline. By advecting such 3D seeds in the velocity field, which is continuously updated in real time, the unsteady flow is visualized more naturally, and the temporal coherence is achieved with no extra efforts. Our method is tested using an AR application for visualizing airflow from a virtual air conditioner. Comparison with the baseline methods shows that our method is suitable for visualizing unsteady flow in AR.

Funder

Ministry of Science and ICT, South Korea

Publisher

Wiley

Reference38 articles.

1. Over Two Decades of Integration-Based, Geometric Flow Visualization

2. A Survey of Seed Placement and Streamline Selection Techniques

3. Similarity Measures for Enhancing Interactive Streamline Seeding

4. HeuvelineV RitterbuschS RonnasS.Augmented reality for urban simulation visualization. Preprint Series of the Engineering Mathematics and Computing Lab.201116.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3