An overview of how rubisco and carbohydrate metabolism may be regulated at elevated atmospheric [CO2] and temperature

Author:

Bowes George,Vu Joseph C. V.,Hussain Mian W.,Pennanen Arja H.,Allen L. Hartwell

Abstract

Although atmospheric CO2 concentration ([CO2]) has been up to 16-fold higher than at present, the past several million years have seen atypically low values. Thus, modern-day plants are adapted to cope with a low [CO2]/[O2] ratio. The present [CO2] does not saturate C3 photosynthesis, so its doubling produces an “efficiency effect”, but it is not always fully realized. Acclimation to high [CO2] during growth can down-regulate photosynthesis, presumably to optimize carbon acquisition and utilization. A primary factor in acclimation is a reduction in rubisco. Two crops, rice and soybean, were used to study this phenomenon. Rice photosynthesis and growth peaked at 500 μmol mol-1 , whereas soybean responded up to 990 μmol mol-1 . Rubisco concentration declined under CO2-enrichment and increasing temperatures, more so in rice than soybean. The rubisco kcat of rice was unaffected by growth [CO2] or temperature, but that from soybean was increased by both. In rice the capacity to handle carbohydrate, as measured by sucrose phosphate synthase activity was up-regulated by CO2 -enrichment, but not by temperature. Leaf carbohydrates were increased by [CO2], but decreased by higher temperatures, starch more so than sucrose. Even though C3 species differ in response to [CO2] and temperature, CO2 -enrichment can moderate adverse effects of temperature extremes.

Publisher

Agricultural and Food Science

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3