Author:
Bowes George,Vu Joseph C. V.,Hussain Mian W.,Pennanen Arja H.,Allen L. Hartwell
Abstract
Although atmospheric CO2 concentration ([CO2]) has been up to 16-fold higher than at present, the past several million years have seen atypically low values. Thus, modern-day plants are adapted to cope with a low [CO2]/[O2] ratio. The present [CO2] does not saturate C3 photosynthesis, so its doubling produces an “efficiency effect”, but it is not always fully realized. Acclimation to high [CO2] during growth can down-regulate photosynthesis, presumably to optimize carbon acquisition and utilization. A primary factor in acclimation is a reduction in rubisco. Two crops, rice and soybean, were used to study this phenomenon. Rice photosynthesis and growth peaked at 500 μmol mol-1 , whereas soybean responded up to 990 μmol mol-1 . Rubisco concentration declined under CO2-enrichment and increasing temperatures, more so in rice than soybean. The rubisco kcat of rice was unaffected by growth [CO2] or temperature, but that from soybean was increased by both. In rice the capacity to handle carbohydrate, as measured by sucrose phosphate synthase activity was up-regulated by CO2 -enrichment, but not by temperature. Leaf carbohydrates were increased by [CO2], but decreased by higher temperatures, starch more so than sucrose. Even though C3 species differ in response to [CO2] and temperature, CO2 -enrichment can moderate adverse effects of temperature extremes.
Publisher
Agricultural and Food Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献