Abstract
The fundamental goal of our paper is to study $\theta$-convex contractive mappings in metric spaces. We demonstrate some fixed point results for such mappings. Also, we give an application to integral equations of our results. Consequently, our results encompass numerous generalizations of the Banach contraction principle on metric space.
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference27 articles.
1. Banach, S., Sur les operationes dans les ensembles abstraits et leur application aux equation integrale, Fundam. Math., 3(1) (1922), 133-181.
2. Berinde, V., Pacurar, M., Fixed points and continuity of almost contractions, Fixed Point Theory, 9(1) (2008), 23–34.
3. Berinde, V., Approximating fixed points of weak contraction using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43–53.
4. Berinde, M., Berinde, V., On general class of multivalued weakly Picard mappings, J. Nonlinear Sci. Appl., 326(2) (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016
5. Jleli, M., Samet, B., A new generalization of the Banach contractive principle, J. Inequal. Appl., 38 (2014). https://doi.org/10.1186/1029-242X-2014-38