Application of ionic and electronic modification of nitride coatings for protection against corrosion during hydrogen feature

Author:

Kadyrzhanov K. K.1,Kozlovskiy A. L.2,Shlimas D. I.1,Moldabaeva G. Zh.3

Affiliation:

1. L.N. Gumilyov Eurasian National University

2. L.N. Gumilyov Eurasian National University; Atyrau University named after Kh. Dosmukhamedov

3. Satbayev University

Abstract

Applying nitride or oxide coatings in the form of thin layers is a method that can enhance steel structures and resilience of oil pipelines against flooding and corrosion. Such coatings have excellent corrosion-resistant properties. The article presents the results of an assessment of the use of both ionic and electronic modifications of nitride coatings (TiN) on stainless steel to enhance its resilience against hydrogenation and degradation processes occurring during the hydrogen accumulation in the surface layer. These processes lead to embrittlement and corrosion of steel. O2+ and N2+ ions with an energy of 20 keV/charge were chosen as ions for modifying the coatings; the irradiation fluences were in the range of 1013-1015 ion/cm2 . Electrons with an energy of 500 keV and radiation doses from 100 to 500 kGy were utilised to carry out the electron modification process. The experimental results indicate that modifying the ionic content contributes to the creation of more dislocation defects in the structure. This accumulation of defects results in improved strength and resistance to cracking. Through electron irradiation, the thermal effect primarily modifies the crystal structure, enhancing both its stability and densification. An analysis of the effect of hydrogenation and corrosion has demonstrated that ionic modification using a fluence of 5 × 1013 ion/cm2 enhances the stability of the coating structure and elevates corrosion potentials.

Publisher

Industrial University of Tyumen

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3