Innovative methodology for predicting pipe thickness loss based on electromagnetic flaw detection results

Author:

,Dyshin O. A.,Bakirova L. R., ,Feyziyeva G. E.,

Abstract

The paper proposes an innovative approach to forecasting based on the results of electromagnetic flaw detection to determine maximum pipe thickness losses over 10-m intervals of the immersion depth of the lower part of a pipe into a well. The main model uses rank transformation applied to a fuzzy regression model with fuzzy input variables and fuzzy output. The input variables include the main parameters of the reservoir in the well (temperature, density, and dynamic viscosity of the hydrocarbon mixture), while the output variable is the maximum loss of pipe thickness in the above–mentioned immersion intervals of the lower part of the pipe. The error of the output forecasts is determined using a numerical procedure to estimate the difference between fuzzy numbers. The forecasting is performed using a sliding method that combines rank fuzzy regression with clear nonlinear regression until the prediction error reaches the specified threshold value. The use of fuzzy regression with fuzzy input and output makes it possible to assess the impact of reservoir parameters on the condition of pipes and the potential for emissions and critical situations. Keywords: Fuzzy LR-type numbers; rank transformation; fuzzy regression; electromagnetic flaw detection; fuzzy outliers; sliding prediction; membership function; pipe thickness loss.

Publisher

Oil Gas Scientific Research Project Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3