Encapsulation of naturally occurring flavonoids into liposomes: physicochemical properties and biological activity against human cancer cell lines

Author:

Goniotaki M1,Hatziantoniou S2,Dimas K3,Wagner M4,Demetzos C2

Affiliation:

1. Department of Pharmacognosy and Natural Product Chemistry, School of Pharmacy, Panepistimiopolis Zografou 15771, Athens, Greece

2. Department of Pharmaceutical Technology, School of Pharmacy, Panepistimiopolis Zografou 15771, Athens, Greece

3. Laboratory of Pharmacology-Pharmacotechnology, Foundation for Biomedical Research, Academy of Athens, Athens, Greece

4. Mettler-Toledo GmbH Business Unit Analytical Sonnenbergstrasse 74, CH-8603, Schwerzenbach, Switzerland

Abstract

Abstract Liposomes consisting of egg phosphatidylcholine were prepared by a thin-film hydration method followed by sonication and were used to investigate the percentage encapsulation of four flavonoids (quercetin, rutin, isoscutellarein and isoscutellarein diglycoside). The lipid recovery and the flavonoid-to-lipid molar ratio were measured using high-performance thin-layer chromatography/flame ionization detection and UV-vis spectroscopy. Differential scanning calorimetry was used to study the effect of the flavonoids on the phase transition temperature and on the enthalpy of the main phase transition of dipalmitoylphosphatidylcholine bilayers, and their ability to influence the membrane fluidity. The final liposomal formulation incorporating flavonoids, as well as free flavonoids, were tested for their activity against human cancer cell lines using the sulforhodamine B assay. The results showed that the encapsulation efficiency varied from 95% (0.21 flavonoid-to-lipid molar ratio) to 37.5% (0.09 flavonoid-to-lipid molar ratio) for isoscutellarein and its glycoside, respectively. The differential scanning calorimetry data showed close thermal and dynamic effects depending on the structure of the flavonoids, and suggest that there is a relationship between flavonoid molecular structure and the interaction with model membranes. Liposomal isoscutellarein showed improved growth inhibiting activity against all cell lines tested in comparison with that of its free form, which was inactive (>100 μM).

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3