Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol

Author:

Breyer-Pfaff U1,Nill K1

Affiliation:

1. Institut für Pharmakologie und Toxikologie, Abteilung Toxikologie, Eberhard-Karls-Universität Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany

Abstract

Abstract The opioid receptor antagonist naltrexone and the antiemetic 5-HT3 receptor antagonist dolasetron are ketonic drugs that are efficiently reduced to their corresponding alcohols in-vivo. These experiments aimed at characterizing the role in these reactions of individual oxidoreductases present in human liver cytosol. Aldo-keto reductases (AKRs) and carbonyl reductase (CR, EC 1.1.1.184) purified from human liver cytosol were incubated with varying substrate concentrations and 6β-naltrexol or reduced dolasetron were analysed by HPLC. AKR1C1, AKR1C2, and AKR1C4 were able to reduce both substrates. On the basis of kcat/Km values, AKR1C4 was nearly 1000-fold more efficient in reducing naltrexone than was AKR1C1, while AKR1C2 was of intermediate efficiency. Substrate inhibition was observed on incubating AKR1C2 or AKR1C4 with naltrexone. In contrast, dolasetron was also a substrate of CR. AKR1C1 and AKR1C4 were the most efficient enzymes in producing reduced dolasetron. We concluded that the efficient reduction of naltrexone by AKR1C4 probably causes the high 6β-naltrexol/naltrexone ratio in man. The rapid disappearance from human plasma of dolasetron given intravenously and its virtual absence after oral dosage are explained by its liability to reduction by several enzymes, including CR which shows widespread expression in human tissues.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3