Effect of the β-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases

Author:

Oleson Lauren1,Court Michael H1

Affiliation:

1. Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Ave, M + V Rm 308, Boston, MA 02111, USA

Abstract

Abstract Glucuronidation studies using microsomes and recombinant uridine diphosphoglucuronosyltransferases (UGTs) can be complicated by the presence of endogenous β-glucuronidases, leading to underestimation of glucuronide formation rates. Saccharolactone is the most frequently used β-glucuronidase inhibitor, although it is not clear whether this reagent should be added routinely to glucuronidation incubations. Here we have determined the effect of saccharolactone on eight different UGT probe activities using pooled human liver microsomes (pHLMs) and recombinant UGTs (rUGTs). Despite the use of buffered incubation solutions, it was necessary to adjust the pH of saccharolactone solutions to avoid effects (enhancement or inhibition) of lowered pH on UGT activity. Saccharolactone at concentrations ranging from 1 to 20 mM did not enhance any of the glucuronidation activities evaluated that could be considered consistent with inhibition of β-glucuronidase. However, for most activities, higher saccharolactone concentrations resulted in a modest degree of inhibition. The greatest inhibitory effect was observed for glucuronidation of 5-hydroxytryptamine and estradiol by pHLMs, with a 35% decrease at 20 mM saccharolactone concentration. Endogenous β-glucuronidase activities were also measured using various human tissue microsomes and rUGTs with estradiol-3-glucuronide and estradiol-17-glucuronide as substrates. Glucuronide hydrolysis was observed for pHLMs, lung microsomes and insect-cell expressed rUGTs, but not for kidney, intestinal or human embryonic kidney HEK293 microsomes. However, the extent of hydrolysis was relatively small, representing only 9–19% of the glucuronide formation rate measured in the same preparations. Consequently, these data do not support the routine inclusion of saccharolactone in glucuronidation incubations. If saccharolactone is used, concentrations should be titrated to achieve activity enhancement without inhibition.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3