Evaluation of population pharmacokinetic models for amikacin dosage individualization in critically ill patients

Author:

de Gatta María del Mar Fernández1,Moreno Silvia Romano2,Calvo María Victoria3,Ardanuy Ramón4,Domínguez-Gil Alfonso13,Lanao José M1

Affiliation:

1. Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain

2. Department of Pharmacy, Autonomous University of San Luis Potosi, Mexico

3. Pharmacy Service, University Hospital of Salamanca, Spain

4. Department of Statistics Faculty of Sciences, University of Salamanca, Spain

Abstract

Abstract Objectives The aim of this study was to evaluate the reliability for dosage individualization and Bayesian adaptive control of several literature-retrieved amikacin population pharmacokinetic models in patients who were critically ill. Methods Four population pharmacokinetic models, three of them customized for critically-ill patients, were applied using pharmacokinetic software to fifty-one adult patients on conventional amikacin therapy admitted to the intensive care unit. An estimation of patient-specific pharmacokinetic parameters for each model was obtained by retrospective analysis of the amikacin serum concentrations measured (n = 162) and different clinical covariates. The model performance for a priori estimation of the area under the serum concentration-time curve (AUC) and maximum serum drug concentration (Cmax) targets was obtained. Key findings Our results provided valuable confirmation of the clinical importance of the choice of population pharmacokinetic models when selecting amikacin dosages for patients who are critically ill. Significant differences in model performance were especially evident when only information concerning clinical covariates was used for dosage individualization and over the two most critical determinants of clinical efficacy of amikacin i.e. the AUC and Cmax values. Conclusions Only a single amikacin serum level seemed necessary to diminish the influence of population model on dosage individualization.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3