Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel

Author:

Legault Jean12,Pichette André12

Affiliation:

1. Laboratoire LASEVE, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada

2. FPL Pharma Inc., 1325, Boulevard Lemire, Drummonville, Québec, Canada

Abstract

Abstract β-caryophyllene is a sesquiterpene widely distributed in essential oils of various plants. Several biological activities are attributed to β-caryophyllene, such as anti-inflammatory, antibiotic, antioxidant, anticarcinogenic and local anaesthetic activities. In this work, the potentiating effect of β-caryophyllene on the anticancer activity of α-humulene, isocaryophyllene and paclitaxel against MCF-7, DLD-1 and L-929 human tumour cell lines was evaluated. A non-cytotoxic concentration of β-caryophyllene significantly increased the anticancer activity of α-humulene and isocaryophyllene on MCF-7 cells: α-humulene or isocaryophyllene alone (32 μg mL−1) inhibited cell growth by about 50% and 69%, respectively, compared with 75% and 90% when combined with 10 μg mL−1 β-caryophyllene. Moreover, β-caryophyllene potentiated the anticancer activity of paclitaxel on MCF-7, DLD-1 and L-929 cell lines. The highest potentiating effect was obtained in DLD-1 cells treated with paclitaxel combined with 10 μg mL−1 β-caryophyllene, which increased the paclitaxel activity about 10-fold. The intracellular accumulation of paclitaxel-oregon green was evaluated in combination with concentrations of β-caryophyllene ranging from 2.5 to 40 μg mL−1. β-Caryophyllene (10 μg mL−1) significantly increased the intracellular accumulation of paclitaxel-oregon green (about 64% over controls). Moreover, β-caryophyllene induced intracellular accumulation of calcein but not verapamil, an inhibitor of P-glycoprotein and multidrug resistance related protein transporters, suggesting that β-caryophyllene promotes drug accumulation by a different mechanism of action. These results suggest that β-caryophyllene facilitates the passage of paclitaxel through the membrane and thus potentiates its anticancer activity.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3