The effect of groundwater petroleum hydrocarbons contaminants on chlorine removal in Basra city (south of Iraq): An application of mixed technology of permeable reactive barrier
-
Published:2021-05-27
Issue:2
Volume:9
Page:
-
ISSN:2307-1877
-
Container-title:Journal of Engineering Research
-
language:
-
Short-container-title:JER is an international, peer-reviewed journal that publishes full-length original research papers, reviews, case studies in all areas of Engineering
Author:
Abu-Alhail Arab Saad, ,Mohammed Rusul Naseer,
Abstract
Petroleum hydrocarbon contaminants in groundwater are among the most impactful environmental problems in oil production in southern Iraq, especially Basra city. Petroleum hydrocarbon contaminants affect related projects surrounding the primary pollution site. Benzene, toluene, and dimethylbenzene are the most toxic pollutants affecting the removal of perchloroethene (Cl2C=CCl2) and trichloroethene (C2HCl3) in groundwater. These pollutants have high solubility in water, leading to their transport over long distances in groundwater and difficult removal. The influence of petroleum hydrocarbons on the chlorine removal of perchloroethene and trichloroethene was studied using a polytetrafluorethylene column packed with zero-valent iron (ZVI). Batch experiments were implemented to investigate the equilibrium supply of mixtures between the aqueous and solid stages in packed column systems. It was designated using the Freundlich isotherm expression, and the result showed that R2 was greater than 0.97 for benzene, toluene, and xylene. The column study noted that the reaction constant was decreased in all columns by approximately 48 % when the pore volume was between 50 and 205, which reflects the dechlorination priority of P-CE over T-CE. These findings indicate that benzene and toluene are more effective for adsorption on the ZVI particle surfaces owing to disparate influences.
Publisher
Journal of Engineering Research
Subject
General Engineering