Research on integrated scheduling of equipment predictive maintenance and production decision based on physical modeling approach

Author:

Zhang Qinglei,Yang Lei,Duan Jianguo,Qin Jiyun,Zhou Ying

Abstract

Equipment performance deteriorates continuously during the production process, which makes it difficult to achieve the expected effect of production decisions made in advance. Predictive maintenance and production decisions integrated scheduling aim to rationalise maintenance activities. It has been extensively researched. However, past studies have assumed that faults obey a specific probability distribution based on historical data. It is difficult to analyse equipment that is brand new into service or has poor historical failure data. Thus, in this paper, we construct a twin model of a device based on a physical modelling approach and tune it to ensure high fidelity of the model. Degradation curves were created based on equipment characteristics and developed maintenance activities.Develop an integrated scheduling model for predictive maintenance and production decisions with the goal of minimising maximum processing time. An improved genetic algorithm is used to solve the problem optimally. Finally, apply a practical scenario to verify the effectiveness of the proposed method.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3