Author:
Zhiyong Gao,Jiwu Li,Rongxi Wang
Abstract
Uncertainty is a key problem in remaining useful life (RUL) prediction, and measures to
reduce uncertainty are necessary to make RUL prediction truly practical. In this paper, a
right-time prediction method is proposed to reduce the prognostics uncertainty of mechanical systems under unobservable degradation. Correspondingly, the whole RUL prediction process is divided into three parts, including offline modelling, online state estimating and online life predicting. In the offline modelling part, hidden Markov model (HMM) and proportional hazard model (PHM) are built to map the whole degradation path. During operation, the degradation state of the object is estimated in real time. Once the last degradation state reached, the degradation characteristics are extracted, and the survival function is obtained with the fitted PHM. The proposed method is demonstrated on an engine dataset and shows higher accuracy than traditional method. By fusing the extracted degradation characteristics, the obtained survival function can be basis for optimal maintenance with lower uncertainty.
Publisher
Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献