Time-course RNA-sequencing and Co-expression Modules Revealed a Critical Salt Response Regulatory Network in Apple

Author:

Huang Xin1,Zhang Meiling2,Wang Liping1,Zhang Xuyao1,Wu Ruigang1,Shen Fei3

Affiliation:

1. College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China

2. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China

3. Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

As one of the most important fruit tree crops, apple (Malus ×domestica), is faced with the serious impact of soil salinization. However, the underlying genetic and regulatory network remains elusive. Here, we adopted time-course RNA sequencing to decipher the genetic basis and regulatory module of apple in response to salt stress. Among a series of intense changes in genes at each time point, the critical genes in the mitogen-activated protein kinase signaling pathway were highly consistent with the duration of the stress treatment. Moreover, Salt Overly Sensitive 1 (SOS1) genes were identified and predicted to play important roles in the response process. We constructed coexpression modules and explored modules significantly associated with stress. SOS genes were identified in the hub genes, suggesting a critical role. Interestingly, transcription factors were also identified and predicted to cointeract with SOS genes in the hub genes of the coexpression module [e.g., HB7 (MD01G1226600), WRKY33 (MD12G1181000), and ERF106 (MD07G1248700)]. Collectively, our exploration and findings provide a reference and data resource for the study of genetic and salt regulatory networks in apple.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3