Emission Patterns of Esters and Their Precursors Throughout Ripening and Senescence in ‘Redchief Delicious’ Apple Fruit and Implications Regarding Biosynthesis and Aroma Perception

Author:

Ferenczi Alejandra,Sugimoto Nobuko,Beaudry Randolph M.

Abstract

The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3