Gene Dosage at the Autoflowering Locus Effects Flowering Timing and Plant Height in Triploid Cannabis

Author:

Kurtz Lauren E.1,Brand Mark H.1,Lubell-Brand Jessica D.1

Affiliation:

1. Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269-4067, USA

Abstract

There is demand for early-flowering cannabis (Cannabis sativa) cultivars to hasten harvest and avoid late-season detrimental weather conditions. A field study and greenhouse studies were conducted to evaluate the effect of gene dosage at the autoflowering locus on flowering timing for diploid and triploid hybrids between autoflowering and photoperiod-sensitive parents. Autoflowering × photoperiod-sensitive hybrids were all photoperiod sensitive, but their critical photoperiods were longer than for homozygous photoperiod-sensitive plants, which resulted in earlier flowering. For triploid genotypes, decreasing dosage of the photoperiod-sensitive allele (A), from AAA to AAa to Aaa, reduced the time to flowering. Flowering timing for the diploid genotype Aa was intermediate between Aaa and AAa. These results provide evidence of incomplete dominance of the A allele at the autoflowering locus. Plants of genotype Aaa flowered 32 to 40 days earlier in the field than genotypes of AA, 15 days earlier than genotype Aa, and were ready for harvest by the second week of August in Connecticut. Plants of Aaa were as tall as other diploid and triploid photoperiod-sensitive genotypes studied, which suggests that they have similar yield potential. The use of tetraploid autoflowering (aaaa) maternal plants in combination with diploid photoperiod-sensitive (AA) pollen parents to produce Aaa genotype seed is a reliable approach for developing early-flowering cultivars of cannabis for flower production purposes.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3