Segregation of Eastern Filbert Blight Disease Response and Single Nucleotide Polymorphism Markers in Three European–American Interspecific Hybrid Hazelnut Populations

Author:

Lombardoni Justin J.1,Honig Josh A.1,Vaiciunas Jennifer N.1,Revord Ronald S.2,Molnar Thomas J.1

Affiliation:

1. Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901

2. Center for Agroforestry, University of Missouri, 1111 Rollins Street, Columbia, MO 65211

Abstract

The perennial stem canker disease eastern filbert blight (EFB), caused by Anisogramma anomala, is devastating to most trees of European hazelnut (Corylus avellana), as genetic resistance is rare in the species. The pathogen is harbored by the wild American hazelnut (Corylus americana) found throughout much of eastern North America. Wild American hazelnut is generally resistant or tolerant to EFB, and is fully cross compatible with C. avellana, the species grown commercially for its nuts, making it a valuable resource for disease resistance breeding. The objective of this study was to identify quantitative trait loci (QTLs) associated with EFB resistance and tolerance in these two species. Three unrelated EFB-resistant C. americana selections [Oregon State University (OSU) 533.069 from Pennsylvania, OSU 403.040 from Nebraska, and OSU 557.122 from Wisconsin] were crossed with C. avellana ‘Tonda di Giffoni’ (TdG), a cultivar from Italy known to be tolerant of EFB. Their progenies, each containing 124 trees, were exposed to A. anomala through field inoculations and natural spread over 7 years, then each tree was evaluated for cumulative disease response. Results showed that disease response of all three populations exhibited a roughly normal distribution, indicating that resistance/tolerance was under multigenic control. An average of 2869 total markers were used to construct each population’s linkage map following genotyping, which included an average of 121 published simple sequence repeat markers to anchor linkage groups (LGs) to those of previous studies. Linkage maps were constructed for each parent of each population and used to map QTLs associated with EFB response. The subsequent analysis resolved five EFB-related QTLs across the three populations, highlighting three genic regions. Unexpectedly, only one QTL was identified from one of the three resistant C. americana parents, located on LG11 of the map of OSU 403.040, whereas three QTLs were found in a similar region on LG10 across the three maps of TdG, and a fifth QTL was found on LG6 of one TdG map. The lack of strong QTLs identified from the three EFB-resistant C. americana parents suggests that their resistance may be highly quantitative and not resolved within the constraints of this study. In contrast, tolerance from TdG appears to be conferred by a limited number of genes with relatively strong effects. Based on prior mapping work in European and American hazelnut where R genes have been located on LG2, LG6, and LG7, the QTLs associated with resistance/tolerance on LG10 and LG11 represent novel resistance regions. These QTLs present new targets for marker aided breeding, especially when pyramiding EFB resistance genes is a goal.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3