‘Kardinal’ Rose Exhibits Growth Plasticity and Enhanced Nutrient Absorption Kinetics Following Nitrate, Phosphate, and Potassium Deprivation

Author:

Mattson Neil,Lieth Heiner

Abstract

Plant internal nutrient status is known to influence the kinetics of nutrient absorption, but little on this relationship has been reported for roses (Rosa spp. L.). The objectives of this experiment were to determine the influence of NO3, PO4, and K deprivation on plant tissue concentrations and relative growth rates and to quantify the influence of nutrient deprivation on absorption kinetic parameters. Rose plants growing in solution culture were deprived of N, P, or K for 0 to 20 days to establish differing tissue concentrations. Absorption kinetics were then determined based on the rate of NO3, PO4, or K depletion from solution over a range of concentrations. The data were fit to a modified Michaelis-Menten equation to account for the influence of internal nutrient status on absorption kinetics. Plants deprived of the nutrients for up to 20 d did not show significantly reduced root or plant fresh weight as compared with control plants. Plant tissue concentrations differed significantly by deprivation treatment and varied from 1.4% to 2.3% for N, 0.22% to 0.35% for P, and from 1.0% to 2.0% for K. Plants deprived of NO3, PO4, and K subsequently showed increased absorption rates. This was primarily expressed as an increased maximum absorption rate for NO3 and PO4. In contrast, K-deprived plants primarily exhibited an increased affinity (decreased Km) for K. The results demonstrate the plasticity of rose plants to grow and absorb nutrients under varying internal nutrient concentrations. This work quantifies the influence of rose plant nutritional status on the kinetics of NO3, PO4, and K absorption. The knowledge would be useful to improve models for providing decision support for fertilization based on plant growth rates and internal nutrient status.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3