Abstract
Drought and heat stress can limit the growth of cool-season grass species, whereas doubling ambient CO2 has been shown to promote plant growth. The objectives of this study were to examine differential responses of shoot and root growth as well as photosynthesis and respiration to doubling ambient CO2 during drought or heat stress alone or the two stresses combined and to determine the relative effectiveness of doubling ambient CO2 in mitigating negative effects of drought or heat stress alone and in combination in a cool-season perennial grass species. Kentucky bluegrass (Poa pratensis cv. Baron) plants were exposed to ambient CO2 (400 μL·L−1) or doubling ambient CO2 (800 μL·L−1) concentrations while subjected to the following stress treatments in growth chambers: drought stress by withholding irrigation, heat stress (35 °C), or the combined two stresses for 28 days. Doubling ambient CO2 increased root and shoot growth as well as root/shoot ratio under all treatments. Doubling ambient CO2 enhanced leaf net photosynthetic rate (Pn) to a greater extent under drought or heat alone, whereas it reduced respiration rate (R), to a larger degree under heat and the combined stress, leading to a greater ratio of Pn/R. Doubling ambient CO2 mitigated adverse physiological effects of drought or heat stress alone, whereas fewer effects were observed under the combined drought and heat stress. The positive effects of doubling ambient CO2 were associated with the development of roots biomass and the maintenance of a positive carbon balance under either stress alone or the combined drought and heat stress.
Publisher
American Society for Horticultural Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献