Author:
Heerema Richard J.,VanLeeuwen Dawn,St. Hilaire Rolston,Gutschick Vince P.,Cook Bethany
Abstract
Photosynthetic function in nut trees is closely related to nitrogen (N) nutrition because much of tree N is held within the leaf photosynthetic apparatus, but growing fruit and seeds also represent strong N sinks. When soil N availability is low, nut trees remobilize and translocate N from leaves to help satisfy N demand of developing fruit. Our objective was to describe shoot-level impacts of pecan [Carya illinoinensis (Wangenh.) K. Koch.] fruiting on leaf N and photosynthesis (Pn) during kernel fill under a range of tree N statuses. Our study was conducted in a mature ‘Western’ pecan orchard near Las Cruces, NM. In 2009, 15 trees showing a range of N deficiency symptom severity were grouped according to leaf SPAD into low, medium, and high N status categories. Differential N fertilizer rates were applied to the soil around high and medium N trees to accentuate differences in N status among the three categories. Light-saturated leaf Pn was measured on fruiting and non-fruiting shoots during kernel fill in 2009 and 2010. After measurement of Pn, the leaflet and its leaflet pair partner were collected, dried, and analyzed for tissue N. Leaf N concentration was significantly lower on fruiting shoots than non-fruiting shoots on all three sampling dates. The tree N status main effect was also significant, whereas the two-way interaction of shoot fruiting status and tree N status was not. Photosynthesis of leaves on fruiting shoots was significantly lower than that of non-fruiting shoots on all sampling dates. These data suggest that N demand by the growing kernel reduced N in leaves on the same shoot. Consequently, Pn of those leaves was reduced. The effect of tree N status and shoot fruiting status was best summarized with an additive model where there is a larger relative reduction in leaf N and Pn for fruiting shoots on trees with low N status.
Publisher
American Society for Horticultural Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献