High-frequency Oligonucleotides in Watermelon Expressed Sequenced Tag-unigenes Are Useful in Producing Polymorphic Polymerase Chain Reaction Markers among Watermelon Genotypes

Author:

Levi Amnon,Wechter William P.,Harris Karen R.,Davis Angela R.,Fei Zhangjun

Abstract

In this study, we report a simple procedure for developing and using new types of polymerase chain reaction (PCR) primers, named “high-frequency oligonucleotides–targeting active genes” (HFO-TAG). The HFO-TAG primers were constructed by first using a “practical extraction and report language” script to identify oligonucleotides (8, 9, and 10 bases) that exist in high frequency in 4700 expressed sequence tag (EST)-unigenes of watermelon (Citrullus lanatus) fruit. This computer-based screening yielded 3162 oligonucleotides that exist 32 to 335 times in the 4700 EST-unigenes. Of these, 192 HFO-TAG primers (found 51 to 269 times in the 4700 EST-unigenes) were used to amplify genomic DNA of four closely related watermelon cultivars (Allsweet, Crimson Sweet, Charleston Gray, and Dixielee). The average number of DNA fragments produced by a single HFO-TAG primer among these four watermelon cultivars was considerably higher (an average of 5.74 bands per primer) than the number of fragments produced by intersimple sequence repeat (ISSR) or randomly amplified polymorphic DNA (RAPD) primers (an average of 2.32 or 4.15 bands per primer, respectively). The HFO-TAG primers produced a higher number of polymorphic fragments (an average of 1.77 polymorphic fragments per primer) compared with the ISSR and RAPD primers (an average of 0.89 and 0.47 polymorphic fragments per primer, respectively). Amplification of genomic DNA from 12 watermelon cultivars and two U.S. Plant Introductions with the HFO-TAG primers produced a significantly higher number of fragments than RAPD primers. Also, in PCR experiments examining the ability of primers to amplify fragments from a watermelon cDNA library, the HFO-TAG primers produced considerably more fragments (an average of 6.44 fragments per primer) compared with ISSR and RAPD primers (an average of 3.59 and 2.49 fragments per primer, respectively). These results indicate that the HFO-TAG primers should be more effective than ISSR or RAPD primers in targeting active gene loci. The extensive EST database available for a large number of plant and animal species should be a useful source for developing HFO-TAG primers that can be used in genetic mapping and phylogenic studies of important crop plants and animal species.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3