Flavor Precursor [S-alk(en)yl-L-cysteine sulfoxide] Concentration and Composition in Onion Plant Organs and Predictability of Field White Rot Reaction of Onions

Author:

Hovius Marilyn H.Y.,Goldman Irwin L.,Parkin Kirk L.

Abstract

Breeders have found field screening for white rot (Sclerotium cepivorum Berk.) resistance in onion (Allium cepa L.) to be unreliable since consistently moderate to high disease levels that significantly differentiate cultivars do not occur over field sites and years. The objective was to determine if differences in onion white rot resistance levels were associated with differing S-alk(en)yl-l-cysteine sulfoxide (ACSO) levels. A collection of onion breeding lines and hybrids were evaluated in field trials at six sites in 1999-2001. High performance liquid chromatography was used to analyze ACSOs in onion plant organs. Four main cysteine-sulfoxides exist in Allium L. species: methyl (MCSO), 2-propenyl (2-PeCSO), 1-propenyl (1-PeCSO), and propyl (PCSO). 1-PeCSO was predominant in onion leaves, bulbs, and roots. 2-PeCSO was found in trace amounts in onion leaves and roots. There was significantly more 2-PeCSO and total ACSO (roots only) and 1-PeCSO (roots and bulbs) in accessions that were more susceptible to white rot in the field trials. This is the first report of significant differences in ACSO contents among white rot susceptible and resistant onions. A covariance analysis was used to determine if the ACSO levels that significantly distinguished among accessions could predict field onion white rot reaction. 1-PeCSO from both roots and bulbs was the best predictor of field disease incidence in field sites that had low, moderate, and high disease levels. Although the ACSO concentrations were not assessed on an individual plant basis, breeders may be able to screen onions for resistance to S. cepivorum by comparing onion root or bulb 1-PeCSO levels based on the results from this research. White rot incidence in the field should be higher in those plants whose roots and bulbs have the highest levels of 1-PeCSO.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3