Nitrogen Deficiency-induced Protein Changes in Immature and Mature Leaves of Creeping Bentgrass

Author:

Xu Chenping,Jiang Zhongchun,Huang Bingru

Abstract

Nitrogen (N) deficiency inhibits plant growth and induces leaf senescence through regulating various metabolic processes. The objectives of this study were to examine protein changes in response to N deficiency in immature and mature leaves of a perennial grass species and determine major metabolic processes affected by N deficiency through proteomic profiling. Creeping bentgrass (Agrostis stolonifera cv. Penncross) plants were originally fertilized with a diluted 36N–2.6P–5K fertilizer. After 14 days acclimation in a growth chamber, plants were grown in a nutrient solution containing 6 mm nitrate (control) or without N (N deficiency). Immature leaves (upper first and second not yet fully expanded leaves) and mature leaves (lower fully expanded leaves) were separated at 28 days of treatment for protein analysis. Two-dimensional electrophoresis and mass spectrometry analysis were used to identify protein changes in immature and mature leaves in response to N deficiency. The abundance of many proteins in both immature and mature leaves decreased with N deficiency, including those involved in photosynthesis, photorespiration, and amino acid metabolism (hydroxypyruvate reductase, serine hydroxymethyltransferase, alanine aminotransferase, glycine decarboxylase complex, glycolate oxidase), protein protection [heat shock protein (HSP)/HSP 70, chaperonin 60 and FtsH-like protein], and RNA stability (RNA binding protein). The reduction in protein abundance under N deficiency was greater in mature leaves than in immature leaves. The abundance of small HSP and metalloendopeptidase increased under N deficiency only in immature leaves. These results suggest that N deficiency accelerated protein degradation in immature and mature leaves of creeping bentgrass, particularly those proteins associated with energy and metabolism, but to a lesser extent in immature leaves. Immature leaves were also able to accumulate proteins with chaperone functions and for N reutilization, which could protect leaves from senescence under N deficiency.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3