Structure and Histochemistry of the Micropylar and Chalazal Regions of the Perisperm–endosperm Envelope of Cucumber Seeds Associated with Solute Permeability and Germination

Author:

Salanenka Yuliya A.,Goffinet Martin C.,Taylor Alan G.

Abstract

The perisperm–endosperm (PE) envelope surrounding the embryo of cucumber (Cucumis sativus) acts as a barrier to apoplastic permeability and radicle emergence. The envelope consists of a single cell layer of endosperm whose outer surface is covered by noncellular lipid and callose-rich layers. We compared the structure and histochemistry of the radicle tip and chalazal regions of the envelope, because these regions differ in permeability. Seeds were treated with coumarin 151, a nonionic, fluorescent tracer with systemic activity. Treated seeds were imbibed and on seedcoat removal, the root tip area of the membrane-covered embryo accumulated the fluorescent tracer, but the tracer could not penetrate the envelope that bordered the cotyledons and chalazal region. The cone-shaped remnant of tissue opposite the micropylar region of the envelope was identified as nucellar tissue, the “nucellar beak.” The cuticular membrane and callose layer of the PE envelope were interrupted in the nucellar beak as well as in the chalazal region. Their role in permeability is apparently substituted by the presence of thick-walled suberized cells in the beak and chalaza. A canal was observed in the center of the nucellar beak that likely provided a conduit for the tracer to diffuse from the environment to the embryo. This canal was the remnant of pollen tube entry through the nucellus and was plugged with several cells, presumably residue of the suspensor. These cells degenerated just before cucumber seed germination. This remnant of the pollen tube canal presumably offers less mechanical resistance in the nucellar beak that might help facilitate radicle protrusion during germination. Cells of the outermost and basal regions of the nucellar beak as well as the walls of endosperm cells contained pectic material. Significant pectin methylesterase activity was found in the lateral and cap regions of the PE envelope long before seed germination. Lack of callose in the envelope at the radicle tip suggests that callose does not act as a barrier to radicle emergence during cucumber seed germination.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3