Variation in and Relationship of Biomass, Growth Rate, Harvest Index, and Phenology to Yield of Common Bean

Author:

Scully B.T.,Wallace D.H.

Abstract

A diverse set of 112 common bean (Paseolus vulgaris L.) accessions were evaluated for variation in eight traits related to yield over a 2-year period. Days to flower, days of pod fill, and days to maturity ranged from 25 to 66, 44 to 83, and 70 to 133, respectively, in upstate New York: Yield and biomass ranged from 81 to 387 and 270 to 1087 g•m-2, respectively. Harvest index ranged from 12% to 65%. The biomass (biomass/days to maturity) and seed (yield/days of pod fill) growth rates ranged from 3.2 to 9.3 and 1.2 to 9.5 g•m-2 -day-1, respectively. The economic growth rate (yield/days to maturity) extended from 0.6 to 5.7 g•m-2 -day-1. The growth rates, biomass, and days of pod fill were linearly and positively related to yield. Biomass and the growth rates explained a large amount of the variation in yield, with r2 values between 0.71 and 0.84; days of pod fill explained the least, with r2 = 0.09. Yield followed a curvilinear relationship with days to flower and days to maturity; yield was maximized at 48.5 days to flower and 112.2 days to maturity. Yield was a quadratic function of harvest index and maximized at 57.2%. Among these three curvilinear traits, days to flower explained 80% of the variation in yield, while days to maturity and harvest index accounted for 25% and 12.5%, respectively. The “ideal” genotype for New York was defined at these maximum values for harvest index, days to maturity, days to flower, and at 63.7 days of pod fill. Additionally, a simple equation is proposed to aid breeders in the selection of common bean accessions with strong sink strength. It is defined as “relative sink strength”: RSS = seed growth rate/biomass growth rate. Values > 1.0 implied strong sink capacity in common beans.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3