Spatial Variability of Soluble Solids or Dry-matter Content within Individual Fruits, Bulbs, or Tubers: Implications for the Development and Use of NIR Spectrometric Techniques

Author:

Peiris K.H.S.,Dull G.G.,Leffler R.G.,Kays S.J.

Abstract

Spatial variation in soluble solids content (SSC) of fruits of apple (Malus ×domestica Borkh. cv. Red Delicious), cantaloupe (Cucumis melo L. Cantaloupensis group), grapefruit (Citrus paradisi Macf. cv. Indian River Ruby Red), honeydew melon (Cucumis melo L. Inodorus group), mango (Mangifera indica L. cv. Hayden), orange (Citrus sinensis L. Osbeck. cv. Valencia), peach (Prunus persica L. Batsch. cv. Windblow), pineapple (Ananas comosus L. Merr. cv. Kew) and tomato (Lycopersicon esculentum Mill.), and of bulbs of onion (Allium cepa L. Cepa group) and in dry-matter content (DMC) of potato (Solanum tuberosum L. cv. Russet Burbank) tubers was measured along three directional orientations (i.e., proximal to distal, circumferentially midway along the proximal to distal axis, and radially from the center of the interior to the outer surface). The pattern and magnitude of constituent variation depended on the type of product and the direction of measurement. Radial and proximal to distal variation was greater than circumferential variation in all the products tested. Honeydew had the highest radial variation with a SSC difference of 6.0 % and a cv of 22.8%, while tomato displayed lower radial variation with a cv of 1.0%. Pineapple had a proximal to distal SSC difference of 4.6% with a cv of 13.8%, while the difference in tomato was 0.6% with a cv of 5.1%. Circumferential variation of SSC in all products tested was <2% with cv ranging from 1.1% to 3.8%. The results confirm that considerable constituent variability exists within individual fruit and vegetable organs. This variability may affect the accuracy of calibration equations and their prediction capability. Therefore, within-unit constituent variability should be meticulously assessed when an NIR spectrometric method is being developed for the nondestructive quality evaluation and sorting of a product.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3