Author:
Mahangade Priyanka Sharad,Mani Indra,Beaudry Randolph,Müller Norbert,Chopra Sangeeta
Abstract
Some storages have limited control over their internal environment and undergo daily and seasonal fluctuations in both temperature and humidity, which cause variation in the metabolic activity of stored products. As a result, it is difficult to assess and compare the performance of these imperfect storages using measures of environmental control. We propose using measures of plant senescence as a proxy for estimating storage performance of these “imperfect” storages based on the premise that physiological processes integrate changes of temperature and/or humidity in a predictable, mathematically describable manner. We evaluated amaranth (Amaranthus tricolor L.) as a model plant for evaluating imperfect storages using a red-leaf cultivar Pusa lal chaulai and a green-leaf cultivar Pusa kiran. Amaranth is a leafy vegetable grown worldwide and is a highly nutritious and versatile food. Cumulative respiration, a measure of integrated metabolic activity, was regressed against leaf abscission, chlorophyll loss, and leaf yellowing of amaranth stems for four storages having different, variable, temperature profiles. Storages included 1) an evaporatively cooled (EC) structure; 2) a solar-refrigerated and evaporatively cooled (SREC) structure; 3) an uncooled laboratory (UL); and 4) a household refrigerator (REF). We found that the rate of abscission, chlorophyll loss, and leaf yellowing differed markedly for the four storages; however, these measures of senescence were linearly related to estimates of cumulative respiration. The ease of measuring leaf abscission, chlorophyll loss, and leaf yellowing permits data collection even with minimal resources. We propose that amaranth would make an effective model plant for comparing the performance of storages differing dramatically in temperature control. A 10% leaf abscission in amaranth is proposed as a target for comparing storages.
Publisher
American Society for Horticultural Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献