Optimizing Irrigation and Fertilization of Gardenia jasminoides for Good Growth and Minimal Leaching

Author:

Bayer Amanda,Ruter John,van Iersel Marc W.

Abstract

Excessive irrigation and leaching are of increasing concern in container plant production. It can also necessitate multiple fertilizer applications, which is costly for growers. Our objective was to determine whether fertilizer and irrigation water can be applied more efficiently to reduce leachate volume and nutrient content without negatively impacting aboveground growth of Gardenia jasminoides ‘MAGDA I’. Plants were fertilized with one of three rates of a controlled-release fertilizer (subplots) (Florikan 18–6–8, 9–10 month release; 18.0N–2.6P–6.6K) [100 (40 g/plant), 50 (20 g/plant), and 25% of bag rate (10 g/plant)] and grown in 5.4-L containers outside for 137 days. Soil moisture sensor-controlled, automated irrigation was used to provide plants with one of four irrigation volumes (whole plots) (66, 100, 132, or 165 mL) at each irrigation event. All plants were irrigated when the control treatment (66 mL irrigation volume, 100% fertilizer treatment) reached a volumetric water content (VWC) of 0.35 m3·m−3. Plants in the different irrigation treatments were irrigated for 2, 3, 4, or 5 minutes, thus applying 66, 100, 132, or 165 mL/plant in the different irrigation treatments. Fertilizer rate had a greater effect on aboveground growth than irrigation volume with the 25% fertilizer rate resulting in significantly lower shoot dry weight (18.7 g/plant) than the 50% and 100% rates (25.3 and 27.3 g/plant respectively). Growth index was also lowest in the 25% fertilizer rate. Leachate volume varied greatly during the growing season due to rainfall and irrigation volume effects on leachate were most evident during the third, eighth, and ninth biweekly leachate collections, during which there was minimal or no rainfall. For these collections the control treatment of 66 mL resulted in minimal leachate (less than 130 mL over the 2-week leachate collection period), whereas leachate volume increased with increasing irrigation volumes. Pore water electrical conductivity (EC), leachate EC, NO3-N content, and PO4-P content were all highest with the 100% fertilizer rate, with the 66 mL irrigation treatment having the highest leachate EC for all fertilizer treatments. Cumulative leachate volumes for the 66 and 100 mL irrigation treatments were unaffected by fertilizer rate, whereas the 132 and 165 mL had greater leaching at the 25% fertilizer rate. Lower irrigation volumes resulted in reduced water and nutrient leaching and higher leachate EC. The higher leachate EC was the result of higher concentration of nutrients in less volume of leachate. The results of this study suggest that a combination of reduced fertilizer rates (up to 50%) and more efficient irrigation can be used to produce salable plants with reduced leaching and thus less environmental impact.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3