Salt Tolerance and Growth of 13 Avocado Rootstocks Related Best to Chloride Uptake

Author:

Celis Nydia,Suarez Donald L.,Wu Laosheng,Li Rui,Arpaia Mary Lu,Mauk Peggy

Abstract

Avocado (Persea americana Mill.) is one of the most salt-sensitive crops and one of the highest value crops per acre. In the United States, avocados are grown primarily in California, in regions experiencing both scarcity of freshwater and salinization of available water supplies. Thus, our objectives were to evaluate avocado rootstocks for salt tolerance and evaluate the relationship between leaf ion concentrations, trunk diameter, leaf burn, and fruit yield. Our field experiment evaluated the salt tolerance of the Hass scion grafted onto 13 different avocado rootstocks using the Brokaw clonal rootstock technique. The experiment consisted of 156 trees arranged in a randomized complete block design with six replications of each saline [electrical conductivity (EC) = 1.5 dS·m–1, Cl = 4.94 mmol·L–1] and nonsaline (EC= 0.65 dS·m–1, Cl = 0.73 mmol·L–1) irrigation water treatment. We collected soil samples and leaves, then analyzed them for major ions. The rootstocks R0.06, R0.07, PP14, and R0.17, which had high concentrations of Cl and Na in the leaves, were the least salt tolerant, with 100% mortality in the rows irrigated with saline water for 23 months. The rootstocks R0.05, PP40, R0.18, and Dusa, which had low concentrations of Cl ions in the fully expanded leaves, were least affected by salinity, and these rootstocks exhibited the greatest yields, largest trunk diameters, and greatest survival percentages in the saline treatment. Yield and growth parameters correlated well with leaf Cl concentration, but not Na, indicating that salt damage in avocado is primarily a result of Cl ion toxicity. Under arid inland environments, no variety performed satisfactorily when irrigated with an EC = 1.5 dS·m–1 water (Cl = 4.94 mmol·L–1). However, the more tolerant varieties survived at soil salinity levels that would apparently be fatal to varieties reported earlier in the literature.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3