Author:
Massa Gioia D.,Kim Hyeon-Hye,Wheeler Raymond M.,Mitchell Cary A.
Abstract
Light-emitting diodes (LEDs) have tremendous potential as supplemental or sole-source lighting systems for crop production both on and off earth. Their small size, durability, long operating lifetime, wavelength specificity, relatively cool emitting surfaces, and linear photon output with electrical input current make these solid-state light sources ideal for use in plant lighting designs. Because the output waveband of LEDs (single color, nonphosphor-coated) is much narrower than that of traditional sources of electric lighting used for plant growth, one challenge in designing an optimum plant lighting system is to determine wavelengths essential for specific crops. Work at NASA's Kennedy Space Center has focused on the proportion of blue light required for normal plant growth as well as the optimum wavelength of red and the red/far-red ratio. The addition of green wavelengths for improved plant growth as well as for visual monitoring of plant status has been addressed. Like with other light sources, spectral quality of LEDs can have dramatic effects on crop anatomy and morphology as well as nutrient uptake and pathogen development. Work at Purdue University has focused on geometry of light delivery to improve energy use efficiency of a crop lighting system. Additionally, foliar intumescence developing in the absence of ultraviolet light or other less understood stimuli could become a serious limitation for some crops lighted solely by narrow-band LEDs. Ways to prevent this condition are being investigated. Potential LED benefits to the controlled environment agriculture industry are numerous and more work needs to be done to position horticulture at the forefront of this promising technology.
Publisher
American Society for Horticultural Science
Cited by
574 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献