Root Development and Profile Characteristics of Bermudagrass and Zoysiagrass

Author:

Fuentealba Maria P.,Zhang Jing,Kenworthy Kevin E.,Erickson John E.,Kruse Jason,Trenholm Laurie E.

Abstract

Irrigation for commercial and residential turf is becoming limiting, and water scarcity is one of the long-term challenges facing the turfgrass industry. Potential root development and profile characteristics of turfgrass provide important information regarding their drought resistance mechanisms and developing drought-resistant cultivars. The objective of this study was to determine the potential root development and root profile characteristics of two bermudagrass species and two zoysiagrass species using experimental lines and commercial cultivars. The species evaluated in the study were: African bermudagrass (Cynodon transvaalensis Burtt-Davy), common bermudagrass (CB) [Cynodon dactylon (L.) Pers. var. dactylon], Zoysia japonica (ZJ) (Steud), and Zoysia matrella (ZM) L. Plants were grown outdoors in clear acrylic tubes encased in poly vinyl chloride (PVC) sleeves. The experimental design was randomized complete block design with four replications. Rates of root depth development (RRDD) during the first 30 days were obtained. Root length density (RLD) in four different horizons (0–30, 30–60, 60–90, and 90–120 cm) was determined 60 days after planting. Specific root length (SRL, m·g−1) was also calculated dividing total root length by total root dry weight (RDW). The root depth in four turfgrass species increased linearly during the first 30 days after planting. Common bermudagrass (CB) had high RRDD and uniform RLD in different horizons, while ZM accumulated the majority of its roots in the upper 30 cm. Z. matrella had higher RLD than CB in the upper 30 cm. African bermudagrass had higher SRL than CB. There was limited variation within the two African bermudagrass genotypes studied except at the lowest horizon (90–120 cm). Two genotypes in CB and ZJ, respectively, including ‘UF182’ (ZJ), which consistently ranked in the top statistical group for RRDD, and RLD for every horizon, and ‘UFCD347’ (CB) demonstrated greater RLDs in the lower horizons in comparison with the commercial cultivars.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3