Genetic Analysis of Resistance to Multiple Isolates of Phytophthora capsici and Linkage to Horticultural Traits in Bell Pepper

Author:

Chunthawodtiporn Jareerat,Hill Theresa,Stoffel Kevin,Van Deynze Allen

Abstract

Phytophthora capsici is one of the major pathogens found in pepper production, especially in bell pepper. Due to the high level of genetic diversity of the pathogen, bell pepper varieties with broad genetic resistance are essential for disease management. Criollo de Morelos – 334 (CM334), a landrace that has a high level of genetic resistance to P. capsici, has been used as the resistant source for P. capsici to generate a recombinant inbred line (RIL) population with the susceptible bell pepper cultivar Maor. From the resulting population, quantitative trait locus (QTL) models explaining resistance to each of four isolates of P. capsici were derived from QTL regions on three chromosomes using stepwiseqtl in R/qtl. A single region of chromosome 5 contained major QTL for resistance to each of the four isolates. Two isolate-specific QTL conferring resistance to isolates PWB53 and PWB106 were located on chromosomes 10 and 11, respectively. Both isolate-specific QTL had epistatic interactions with a major QTL on chromosome 5. Using the pepper reference genome and gene annotation, candidate genes for P. capsici resistance within 1.5-logarithm of odds (LOD) interval were identified. Based on functional annotations derived from Arabidopsis thaliana and solanaceous crop databases, multiple candidate genes related to resistance (R) gene complexes or to plant immune system were found under the QTL on all three chromosomes. A comparison of the locations of resistance QTL and previously identified horticultural QTL using the same population revealed tight linkage between resistance to P. capsici and a stem pubescence QTL o chromosome 10. Both candidate genes for P. capsici resistance and the linkages between resistance and horticultural traits could be applied for selection to broad resistance to P. capsici in bell pepper–breeding programs.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3