Use of Switchgrass as a Nursery Container Substrate

Author:

Altland James E.,Krause Charles

Abstract

Loblolly pine (Pinus taeda L.) bark is the primary component of nursery container substrates in the eastern United States. Shortages in pine bark prompted investigation of alternative substrates. The objective of this research was to determine if ground switchgrass (Panicum virgatum L.) could be used for short production-cycle woody crops. Two experiments were conducted using ‘Paprika’ rose (Rosa L. ‘ChewMayTime’) potted in 15-cm tall and wide containers. In Expt. 1, substrates were composed of coarse-milled switchgrass (processed in a hammermill with 1.25- and 2.5-cm screens) amended with 0%, 30%, or 50% peatmoss and fertilized with 100, 250, or 400 mg·L−1 nitrogen (N) from ammonium nitrate. In Expt. 2, substrates were composed of coarse-milled (similar to Expt. 1) or fine-milled switchgrass (processed through a single 0.48-cm screen), amended with 0% or 30% peatmoss, and fertilized with the same N rates as in Expt. 1. Summarizing across both experiments, coarse switchgrass alone had high air space and low container capacity. Fine switchgrass had physical properties more consistent with what is considered normal for nursery container substrates. Switchgrass pH was generally high and poorly buffered against change. Fine switchgrass had higher pH than coarse switchgrass. Tissue analysis of rose grown in switchgrass substrate for 7 to 9 weeks revealed low to moderate levels of calcium and iron, but all other nutrients were within acceptable ranges. Despite varying substrate physical properties and pH levels, all roses at the conclusion of the experiment were of high quality. Switchgrass processed to an appropriate particle size and amended with typical nursery materials should provide a suitable substrate for short production-cycle woody crops.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3