Impact of Root Growth on the Physical Properties of Peat Substrate under a Constant Water Regimen

Author:

Cannavo Patrice,Hafdhi Houda,Michel Jean-Charles

Abstract

The impact of root growth on the hydraulic properties of peat substrate was investigated under optimal water retention, i.e., at a constant water potential of –1 kPa. ‘New Guinea’ impatiens was grown in 1.1-L cylindrical containers for 196 d in a greenhouse under controlled climate and fertilization conditions. Water retention and hydraulic conductivity curves, root biomass and volume, and shoot weight were measured. Results indicated a maximal root volumetric content of 0.065 m3·m−3 that was as high as the peat content in containers (0.068 m3·m−3). From Day 0 to Day 196, the total porosity of the growing media decreased from 0.931 m3·m−3 to 0.874 m3·m−3. Moreover, considering the water-holding capacity at a water potential of –1 kPa, it increased from 0.58 to 0.75 m3·m−3 (i.e., by 29.3%) without changes in water availability but with a large decrease in air-filled porosity from 0.35 to 0.14 m3·m−3. The unsaturated hydraulic conductivity K(θ) decreased as a result of root growth. Root growth also modified pore size distribution and pore structure. Hydraulic conductivity curves indicated a better pore connectivity reflected by a decrease in tortuosity.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3