Survival of Salmonella spp. on the Surfaces of Fresh Tomatoes and Selected Packing Line Materials

Author:

Allen Raina L.,Warren Benjamin R.,Archer Douglas L.,Schneider Keith R.,Sargent Steven A.

Abstract

Multi-state outbreaks of salmonellosis due to the consumption of contaminated fresh tomatoes (Lycopersicon esculentum) have recently occurred in the United States. This study investigated the survival of a five-serovar (serotype) Salmonella cocktail artificially inoculated onto tomato and packing line surfaces when held at various temperature and relative humidity (RH) combinations over 28 days. Packinghouse surfaces included stainless steel, polyvinyl chloride (PVC), sponge rollers, conveyor belts, and unfinished oak wood surfaces. Packinghouse climates were generated to simulate conditions in Florida during late spring (30 °C/80% RH) and fall/winter (20 °C/60% RH) months. Additionally, survival of Salmonella on tomatoes in standard ripening room conditions (20 °C/90% RH) was evaluated. Recovery of inocula was by a vigorous shake/hand rub method. After 28 days, Salmonella populations remained detectable on tomato surfaces regardless of environmental conditions. Inoculated Salmonella populations tested at spring conditions declined to undetectable levels on all packing line materials by day 11, with the exception of the unfinished oak, which reached undetectable levels by day 21. In contrast, inoculated Salmonella populations tested at fall/winter conditions declined to undetectable levels on sponge rollers and conveyor belts by day 7 and day 21, respectively. Stainless steel, PVC, and wood surfaces supported the survival of detectable populations of Salmonella over the 28-day sampling period. Results of this study demonstrate the potential for Salmonella to persist on tomato and packing line surfaces under common environmental conditions.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3