Effect of Plant Growth Regulators and Fungicides on Huanglongbing-related Preharvest Fruit Drop of Citrus

Author:

Albrigo Leo G.1,Stover Ed W.2

Affiliation:

1. 1University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL 33850

2. 2U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945

Abstract

The severe citrus (Citrus sp.) disease Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus, has resulted in widespread tree decline in Florida and overall citrus production is now the lowest it has been in 50 years. More than 80% of Florida citrus trees are HLB affected, and most growers attempt to sustain production on infected trees through good asian citrus psyllid (Diaphorina citri) control and enhanced fertilization and irrigation management. Although production appears to benefit from these treatments, preharvest fruit drop is considerably greater than on uninfected trees. U.S. Department of Agriculture (USDA) data indicate that Florida statewide fruit drop has increased by 10% to 20% of the entire crop in the last three growing seasons, essentially doubling the historical levels. Extensive research is underway to identify solutions to HLB, but it is essential to maintain production on existing trees to sustain the industry in the near term. For decades, several plant growth regulators (PGRs) have been labeled to reduce preharvest fruit drop in commercial citrus. Trials of these materials, other nonlabeled PGRs, and some fungicides were conducted in two seasons to determine if fruit drop could be reduced. Randomized complete block design experiments were established using four to six replications of four- to six-tree groups as experimental units, blocked spatially. In 2013–14, sprays of gibberellic acid (GA), 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), S-abscisic acid (S-ABA), aminoethoxyvinylglycine (AVG), and 1-methylcyclopropene (1-MCP) were applied once or twice alone or in some combinations at standard rates to trees in various mature blocks of ‘Valencia’ and ‘Pineapple’ sweet orange (Citrus sinensis), ‘Star Ruby’ grapefruit (Citrus paradisi), or ‘Murcott’ tangor (Citrus reticulata ×C. sinensis) in central Florida in the Indian River area. Only 1 of the 10 individual trials had treatments with significantly lower drop rates than controls; and when pooled across all experiments, GA + 2,4-D reduced number of fruit dropped per tree 4%, but only at P = 0.10. NAA, S-ABA, AVG, and 1-MCP had no effect and were not used the following year. Starting in 2014, treatments were initiated earlier in the season with greater effort to minimize variability: GA; 2,4-D; GA + 2,4-D; a natural GA, indolebutyric acid, cytokinin mix; and strobilurin fungicides were applied to 22 mature blocks of ‘Hamlin’ and ‘Valencia’ sweet orange trees. In 2014–15, only three of the 11 individual ‘Hamlin’ trials and one of the 11 ‘Valencia’ trials included a treatment with significant drop reduction compared with controls. However, when all the tests on ‘Hamlin’ were pooled, there was a significant 5% reduction in total crop drop for GA + 2,4-D and significant reductions with many of these PGRs alone, but in only one case with fungicide treatments. When all tests on ‘Valencia’ were combined, 2,4-D reduced drop significantly but only by 2% of the total crop (14% drop vs. 16% drop), but fruit drop in ‘Valencia’ blocks was near the historical average in control trees. Soil conditions and tree conditions were similar across all test sites and there were no apparent relationships between product efficacy and observed tree condition or any other grove characteristics. In addition, four ‘Hamlin’ and four ‘Valencia’ blocks were treated with 1/4 rates of 2,4-D + 6-benzyladenine every 45 days during the growing season (six sprays) and three of the eight individual trials showed significant reductions in drop: when pooled, these treatments reduced drop by 3% in ‘Valencia’ and 6% in ‘Hamlin’. At this time, PGRs cannot be recommended as a consistent way to reduce fruit drop related to HLB, but further work needs to be conducted to refine the most promising treatments.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3