Impact of Hydrogel on Physical Properties of Coarse-structured Horticultural Substrates

Author:

Fonteno W.C.,Bilderback T.E.

Abstract

Addition of a polyacrylamide hydrogel to pine bark and pine bark + sand substrates had no effect on total porosity, regardless of incorporation rate. Container capacity was increased with increasing rate of hydrogel in both substrates. Air space in pine bark was slightly increased at the lowest rate but was reduced with higher incorporation rates. Air space in pine bark + sand was reduced with all hydrogel additions. The dry weigh', of hydrogel cubes recovered from both substrates was similar to amounts predicted. This result indicates that blending hydrogel granules into the substrates was uniform and did not contribute to variability in hydrogel studies. After allowing dry hydrogel granules to expand freely in distilled water for 24 hours, hydrogel granules expanded 317 and 372 times their dry weights at the lowest and highest rates, respectively. Reduction of expansion (in water) at higher rates may have been due to physical restriction of expansion. Conversely, recovered hydrogel cubes from substrates watered to drainage (-10% excess) for 6 weeks absorbed 25 to 55 times their dry weight while in the container. Subsequent rehydration of extracted gels in distilled water was greater for hydrogel cubes from the pine bark + sand medium (104 to 130) than in pine bark alone (51 to 88). Because of anomalies in hydraulic conductivity and pressure plate contact, three techniques were used to study unavailable water content in gels expanded in distilled water. Hydrogel cubes placed in direct contact with the pressure plate released ≈95% of their water at pressures ≤ 1.5 MPa. Effectiveness of ployacrylamide gels in coarse-structured substrates is influenced by physical restrictions to expansion in the substrate and hydraulic conductivity between the hydrogel cubes and the surrounding substrate.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3