Nickel Deficiency Affects Nitrogenous Forms and Urease Activity in Spring Xylem Sap of Pecan

Author:

Bai Cheng,Reilly Charles C.,Wood Bruce W.

Abstract

While nickel (Ni) deficiency occurs in certain agricultural crops, little is known regarding the influence of deficiency on metabolic or physiological processes. We studied the influence of Ni deficiency on the reduced-nitrogen (N) composition of early spring xylem sap of pecan [Carya illinoinensis (Wangenh.) C. Koch]. High-performance liquid chromatography (HPLC) analysis of sap composition found the presence of ureido-, amide-, and amino-N substances and that they are quantitatively influenced by tree Ni nutritional status. Ureido-N forms quantitatively dominated amide-N forms with respect to both molar concentration and the forms in which reduced N atoms are present; thus, pecan appears to be predominately a ureide-transporting species. The primary ureido-N substances in sap of Ni-sufficient trees are citrulline ≈ asparagine ≈ xanthine > ureidoglycolate > allantoic acid > allantoin ≈ uric acid ≈ urea. Asparagine is the primary amide-N form, while only traces of amino-N forms (e.g., tryptamine and β-phenylethylamine) are found in xylem sap. Nickel deficiency substantially increased citrulline and allantoic acid in xylem sap while decreasing the asparagine, xanthine, and β-phenylethylamine concentrations. These Ni-linked quantitative shifts in reduced-N forms indicate that Ni nutrition potentially affects intermediates of both the ureide catabolic pathway and the urea cycle as well as the nitrogen/carbon (N/C) economy of the tree. Xylem sap-associated urease-specific activity was also reduced as a consequence of Ni deficiency. These results indicate that Ni deficiency potentially disrupts normal N-cycling via disruption of ureide metabolism.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3