Genetic Analyses of Gynogenetic Haploid Production in Onion

Author:

Bohanec Borut,Jakse Marijana,Havey Michael J.

Abstract

The production of doubled haploid plants is desirable as an alternative to sexual inbreeding of longer-generation crops. Onion (Allium cepa L.) is a biennial plant and amenable to the production of gynogenic haploids. Although a strong population effect has been observed for gynogenic haploid production, there is no report describing the genetic basis of greater haploid production in onion. We evaluated over years the frequency of haploid production among onion inbreds and identified lines showing significantly (P < 0.01) greater production of haploids. The onion inbreds, B0223B and B2923B, produced the highest mean frequencies of haploids so far reported. Hybrid families from crosses of B2923B with inbreds having relatively low haploid production showed significantly higher haploid production than the low-producing parent and significantly lower haploid production than B2923B. Plants from B0223B and B2923B with established rates of haploid production were testcrossed and/or self-pollinated. The F1 family from B1717A-1 × B2923B-3 showed rates of haploid production slightly greater than the low parent (B1717A-1) and significantly less than the high parent (B2923B-3). Self-pollination of plants from B2923B showing relatively high rates of haploid production generated S1 progenies also producing relatively high frequencies of haploids. Selfed progenies from plant B2923B-6 showed a high mean rate of haploid production (56.8% ± 14.5%) and, more importantly, the highest level of haploid production (82.2%) reported for any single onion plant. These results indicate that relatively high haploid production, at least for B2923B, was quantitatively inherited with dominance towards low production. We suggest S1 family selection as an effective method to increase gynogenic haploid production of onion populations.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Haploid System in Mutation Breeding;Sustainable Landscape Planning and Natural Resources Management;2024

2. Onion;Essentials of Medicinal and Aromatic Crops;2023

3. Production of haploids and doubled haploids from unfertilized ovule culture of various wild species of gentians (Gentiana spp.);Plant Cell, Tissue and Organ Culture (PCTOC);2021-04-27

4. Parthenogenesis and apogamy in unpollinated ovary culture of leek (Allium tuberosum Roxb.);Journal of Plant Biochemistry and Biotechnology;2021-01-09

5. Species with Haploid or Doubled Haploid Protocols;Methods in Molecular Biology;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3