Relationship between Sensory and Instrumental Analysis for Tomato Flavor

Author:

Baldwin E.A.,Scott J.W.,Einstein M.A.,Malundo T.M.M.,Carr B.T.,Shewfelt R.L.,Tandon K.S.

Abstract

The major components of flavor in tomato (Lycopersicon esculentum Mill.) and other fruit are thought to be sugars, acids, and flavor volatiles. Tomato overall acceptability, tomato-like flavor, sweetness, and sourness for six to nine tomato cultivars were analyzed by experienced panels using a nine-point scale and by trained descriptive analysis panels using a 15-cm line scale for sweetness, sourness, three to five aroma and three to seven taste descriptors in three seasons. Relationships between sensory data and instrumental analyses, including flavor volatiles, soluble solids (SS), individual sugars converted to sucrose equivalents (SE), titratable acidity (TA), pH, SS/TA, and SE/TA, were established using correlation and multiple linear regression. For instrumental data, SS/TA, SE/TA, TA, and cis-3-hexenol correlated with overall acceptability (P = 0.05); SE, SE/TA (P≤0.03), geranylacetone, 2+3-methylbutanol and 6-methyl-5-hepten-2-one (P = 0.11) with tomato-like flavor; SE, pH, cis-3-hexenal, trans-2-hexenal, hexanal, cis-3-hexenol, geranylacetone, 2+3-methylbutanol, trans-2 heptenal, 6-methyl-5-hepten-2-one, and 1-nitro-2-phenylethane (P≤0.11) with sweetness; and SS, pH, acetaldehyde, aceton, 2-isobutylthiazole, geranlyacetone, β-ionone, ethanol, hexanal and cis-3-hexenal with sourness (P≤0.15) for experienced or trained panel data. Measurements for SS/TA correlated with overall taste (P=0.09) and SS with astringency, bitter aftertaste, and saltiness (P≤0.07) for trained panel data. In addition to the above mentioned flavor volatiles, methanol and 1-penten-3-one significantly affected sensory responses (P = 0.13) for certain aroma descriptors. Levels of aroma compounds affected perception of sweetness and sourness and measurements of SS showed a closer relationship to sourness, astringency, and bitterness than to sweetness.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3