Studies on Water Transport through the Sweet Cherry Fruit Surface: V. Conductance for Water Uptake

Author:

Beyer Marco,Knoche Moritz

Abstract

Rain-induced cracking of sweet cherry (Prunus avium L.) fruit is thought to be related to water absorption through the fruit surface. Conductance for water uptake (gtot. uptake) through the fruit surface of `Sam' sweet cherry was studied gravimetrically by monitoring water penetration from a donor solution of deionized water through segments of the outer pericarp into a polyethyleneglycol (PEG) containing receiver solution. Segments consisting of cuticle plus five to eight cell layers of epidermal and hypodermal tissue were mounted in stainless steel diffusion cells. Conductance was calculated from flow rates of water across the segment and the difference in osmotic potential between donor and receiver solution. Flow rates were constant up to 12 hours and decreased thereafter. A log normal distribution of gtot. uptake was observed with a median of 0.97 × 10-7 m·s-1. Further, gtot. uptake was not affected by storage duration (up to 71 days) of fruit used as a source of segments, thickness of segments (range 0.1 to 4.8 mm), or segment area exposed in the diffusion cell. Osmolality of the receiver solution in the range from 1140 to 3400 mmol·kg-1 had no effect on gtot. uptake (1.45 ± 0.42 × 10-7 m·s-1), but gtot. uptake increased by 301% (4.37 ± 0.46 × 10-7 m·s-1) at 300 mmol·kg-1. gtot. uptake was highest in the stylar scar region of the fruit (1.44 ± 0.16 × 10-7 m·s-1) followed by cheek (1.02 ±0.21 × 10-7 m·s-1), suture (0.57 ±0.17 × 10-7 m·s-1) and pedicel cavity regions (0.22 ±0.09 × 10-7 m·s-1). Across regions, gtot. uptake was related positively to stomatal density. Extracting total cuticular wax by dipping fruit in chloroform/methanol increased gtot. uptake from 1.18 ± 0.23 × 10-7 m·s-1 to 2.58 ± 0.41 × 10-7 m·s-1, but removing epicuticular wax by cellulose acetate stripping had no effect (1.59 ± 0.28 × 10-7 m·s-1). Water flux increased with increasing temperature (range 20 to 45 °C). Conductance differed between cultivars with `Hedelfinger' sweet cherry having the highest gtot. uptake (2.81 ± 0.26 × 10-7 m·s-1), followed by `Namare' (2.68 ± 0.26 × 10-7 m·s-1), `Kordia' (0.96 ± 0.14 × 10-7 m·s-1), `Sam' (0.87 ± 0.15 × 10-7 m·s-1), and `Adriana' (0.33 ± 0.02 × 10-7 m·s-1). The diffusion cell system described herein may be useful in analyzing conductance in water uptake through the fruit surface of sweet cherry and its potential relevance for fruit cracking.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3