Mapping Snap Bean Pod and Color Traits, in a Dry Bean × Snap Bean Recombinant Inbred Population

Author:

Hagerty Christina H.,Cuesta-Marcos Alfonso,Cregan Perry,Song Qijian,McClean Phil,Myers James R.

Abstract

Snap bean (Phaseolus vulgaris L.) breeding programs are tasked with developing cultivars that meet the standards of the vegetable processing industry and ultimately that of the consumer, all the while matching or exceeding the field performance of existing cultivars. While traditional breeding methods have had a long history of meeting these requirements, genetic marker technology, combined with the knowledge of important quantitative trait loci (QTL), can accelerate breeding efforts. In contrast to dry bean, snap bean immature pods and seeds are consumed as a vegetable. Several pod traits are important in snap bean including: reduced pod wall fiber, absence of pod suture strings, and thickened, succulent pod walls. In addition, snap bean pods are selected for round pod cross section, and pods tend to be longer with cylindrical seed shape. Seed color is an important trait in snap bean, especially those used for processing, as processors prefer white-seeded cultivars. The objective of this study was to investigate the genetic control of traits important to snap bean producers and processors. RR6950, a small seeded brown indeterminate type IIIA dry bean accession, was crossed to the Oregon State University (OSU) breeding line OSU5446, a type I Blue Lake four-sieve breeding line to produce the RR138 F4:6 recombinant inbred (RI) mapping population. We evaluated the RR138 RI population for processing and morphological traits, especially those affecting pods. The RR138 population was genotyped with the BARCBean6K_3 Beadchip, and single nucleotide polymorphisms (SNPs) were used to assemble a linkage map, and identify QTL for pod traits. The linkage map produced from this study contained 1689 SNPs across 1196cM. The map was populated with an average of one SNP per 1.4 cM, spanning 11 linkage groups. Seed and flower color genes B and P were located on Pv02 and Pv07, respectively. A QTL for string:pod length (PL) ratio was found on Pv02 controlling 32% of total genetic variation. QTL for a suite of important processing traits including pod wall fiber, pod height, pod width, and pod wall thickness were found clustering on Pv04 and controlled 21%, 26%, 18%, and 16% of genetic variation for each of these respective traits. A QTL for PL was found on Pv09 controlling 5% of genetic variation.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3