Water on the Surface Aggravates Microscopic Cracking of the Sweet Cherry Fruit Cuticle

Author:

Knoche Moritz,Peschel Stefanie

Abstract

The effect of surface water on the frequency of microcracks in the cuticular membrane (CM) of exocarp segments (ES) of developing sweet cherry fruit (Prunus avium L.) was studied. Strain of CM and ES on the fruit surface was preserved by mounting a stainless steel washer on the fruit surface in the cheek region using an ethyl-cyanacrylate adhesive. ES were excised by tangentially cutting underneath the washer. Frequency of microcracks in the CM of ES was determined following infiltration for 10 minutes with a 0.1% acridine orange solution by fluorescence microscopy before and after exposure to deionized water (generally 48 hours). Exposing the surface of ES of mature `Burlat' sweet cherry fruit to water resulted in a rapid increase in microcracks in the CM that approached an asymptote at about 30 microcracks/cm2 within 24 hours. There was no change in microcracks in the CM when the surface of the ES remained dry. Incubating ES in polyethylene glycol solution that was isotonic to fruit juice extracted from the same batch of fruit resulted in a greater increase in frequency of microcracks as compared to incubation in deionized water. The water-induced increase in microcracks was closely related to strain of the CM across different developmental stages within a cultivar [between 45 and 94 days after full bloom (DAFB); r2 = 0.96, P ≤ 0.001, n = 9] or across different cultivars at maturity (r2 = 0.92, P ≤ 0.0022, n = 6). Incubating ES of developing fruit in enzyme solution containing pectinase and cellulase such that the outer surface remained dry resulted in complete rupture and failure of the ES. Time to rupture and percentage of ruptured ES were closely related to the strain of the CM (r2 = 0.92, P ≤ 0.001, n = 9 and r2 = 0.68, P ≤ 0.0063, n = 9, respectively). Removal of epicuticular wax had no effect on frequency of water-induced microcracks. Also, temperature had no effect on frequency of water-induced microcracks, but frequency of microcracks increased exponentially when exposing the outer surface of ES to relative humidities above 75%. At 100% humidity the increase in frequency of microcracks did not differ from that induced by liquid water. Local wetting the surface of intact fruit in the pedicel cavity or stylar end region resulted in formation of macroscopically visible cracks despite of a net water loss of fruit. Uniaxiale tensile tests using dry and fully hydrated CM strips isolated from mature `Sam' sweet cherry fruit established that hydration increased fracture strain, but decreased fracture stress and moduli of elasticity. Our data demonstrate that exposure of the fruit surface to liquid water or high concentrations of water vapor resulted in formation of microcracks in the CM.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3