Influence of Irradiance on Leaf Physiology and Plant Growth Characteristics of Rhododendron × `Pink Ruffles'

Author:

Andersen P.C.,Norcini J.G.,Knox G.W.

Abstract

Leaf physiology and plant growth of Rhododendron × `Pink Ruffles' were compared under conditions of 100% sun and under polyethylene shadecloth with specifications of 69%, 47%, and 29% light transmittance. Net CO2 assimilation (A) and stomatal conductance to water vapor (gs) were often reduced for plants in the 100% sun regime, although few differences existed among the 69%, 47%, and 29% sun treatments. Stomatal conductance was very sensitive to leaf to air vapor pressure deficits (VPD), as evidenced by an 85% increase in gs with a decrease in VPD from 3.2 to 2.2 kPa. Light response curves established for plants after 54 days of exposure to 100% and 29% sun were similar, although A was consistently higher at all levels of photosynthetic photon flux for plants in the 29% sun regime. Maximum A was ≈5 and 6 μmol·m-2·s-1 for 100% and 29% sun-grown plants, respectively; light saturation occurred at ≈ 800 μmol·m-2·s-1 Midday relative leaf water content and leaf water potential were not affected by sun regime. The plant growth index decreased with increasing light level. Leaf, stem, and root dry weights; total leaf number and dry weight; total and individual leaf area; dry weight per leaf; and leaf chlorophyll concentration were reduced in 100% sun, yet few differences existed among the 69%, 47%, and 29% sun treatments. Shoot: root ratio and specific leaf weight were proportional to light level. Plants grown in the 100% sun regime were chlorotic and dwarfed, and plants in 29% sun were not sufficiently compact. One year after transplanting to the field under 100% sun, plants of all treatments were chlorotic and failed to grow.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3