Rapid Generation Cycling of Chrysanthemum Using Laboratory Seed Development and Embryo Rescue Techniques

Author:

Anderson Neil O.,Ascher Peter D.,Widmer Richard E.,Luby James J.

Abstract

The generation time (0.75 to 1.5 years) in perennial, hexaploid chrysanthemums [Dendranthema grandiflora Tzvelv. (Chrysanthemum morifolium Ramat.)] impedes the rate of progress for sexual breeding programs in creating new clonal cultivars, inbred lines for hybrid seed production, and genetic studies. Modifications to the crossing environment and embryo rescue were evaluated to minimize the chrysanthemum generation cycle. One greenhouse chrysanthemum clone was outcross-pollinated using a bulk pollen source. Following emasculation, inflorescences were either left in situ or the peduncle bases were placed in styrofoam boards floating on a solution of 1% sucrose and 200 ppm 8-HQC under laboratory conditions. Embryogenesis occurred at a faster rate under laboratory conditions as tested with histological techniques; the heart stage appeared as early as the second day after pollination, compared with 11 days using in situ methods. Total embryogenic development time ranged from 25 (laboratory seed development) to 52+ days (in situ ripening). In a second test, embryo rescue (ER) significantly improved percent seed set, percent germination, and percent of progeny reaching anthesis relative to normal development. ER progeny from both garden parents were significantly earlier in total generation time than corresponding non-ER siblings. Laboratory seed development and ER were then used sequentially to obtain an average progeny generation time of =100 days, thus allowing for three generations per year. The potential impact of these two techniques on breeding chrysanthemums and other perennial crops with long generation times is discussed.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3