Constant-light Injury of Potato: Temporal and Spatial Patterns of Carbon Dioxide Assimilation, Starch Content, Chloroplast Integrity, and Necrotic Lesions

Author:

Cushman Kent E.,Tibbitts Theodore W.,Sharkey Thomas D.,Wise Robert R.

Abstract

Expanding leaflets of young `Kennebec' potato plants (Solanum tuberosum L.) develop visible necrotic spotting after 8 to 9 days of constant light and constant temperature, but little is known about this disorder before the appearance of injury. Whole-leaf autoradiography and iodine staining of terminal leaflets (5 to 10 mm long at the beginning of the constant-light period) showed a normal pattern of CO2 assimilation and starch content over the entire leaflet surface after 5 days of constant light. However, small areas of tissue devoid of CO2 assimilation and starch content became apparent on day 6, and these areas expanded to encompass much of the leaflet's medial and basal regions by day 7. At this stage of leaf development, on day 7, leaflets had attained 50% of their final leaflet length and ceased importing photosynthates from other leaves. Electron micrographs of chloroplasts from the medial and basal regions of leaflets on day 7 revealed a loss of membrane integrity and a senescence-like appearance. At this time, and within these affected regions, scattered groups of necrotic palisade cells began to appear. These scattered groups soon expanded in size and distribution and became apparent as visible necrotic spots on the upper leaflet surface by day 8 or 9. Leaflets on plants grown under constant light hut alternating temperatures, an environment known to be noninjurious, did not exhibit visible spotting or tissue devoid of starch content. In addition, none of these injury symptoms developed in `Denali', a potato cultivar tolerant of constant light. Despite its occurrence in expanding leaf tissue, constant-light injury appears to be a senescence-like event that leads to the catastrophic loss of photosynthetic competence, starch content, and chloroplast membrane integrity, producing chlorosis and necrosis of leaves and eventually stunting the plant.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3