Genetic Variation of Beta-carotene and Lutein Contents in Lettuce

Author:

Mou Beiquan

Abstract

There is increasing medical evidence for the health benefits derived from dietary intake of carotenoid antioxidants, such as β-carotene and lutein. Enhancing the nutritional levels of vegetables would improve the nutrient intake without requiring an increase in consumption. A breeding program to improve the nutritional quality of lettuce (Lactuca sativa L.) must start with an assessment of the existing genetic variation. To assess the genetic variability in carotenoid contents, 52 genotypes including crisphead, leaf, romaine, butterhead, primitive, Latin, and stem lettuces, and wild species were planted in the field in Salinas, Calif., in the Summer and Fall of 2003 with four replications. Duplicate samples from each plot were analyzed for chlorophyll (a and b), β-carotene, and lutein concentrations by high-performance liquid chromatography (HPLC). Wild accessions (L. serriola L., L. saligna L., L. virosa L., and primitive form) had higher β-carotene and lutein concentrations than cultivated lettuces, mainly due to the lower moisture content of wild lettuces. Among major types of cultivated lettuce, carotenoid concentration followed the order of: green leaf or romaine > red leaf > butterhead > crisphead. There was significant genetic variation in carotenoid concentration within each of these lettuce types. Crisphead lettuce accumulated more lutein than β-carotene, while other lettuce types had more β-carotene than lutein. Carotenoid concentration was higher in summer than in the fall, but was not affected by the position of the plant on the raised bed. Beta-carotene and lutein concentrations were highly correlated, suggesting that their levels could be enhanced simultaneously. Beta-carotene and lutein concentrations were both highly correlated with chlorophyll a, chlorophyll b, and total chlorophyll concentrations, suggesting that carotenoid content could be selected indirectly through chlorophyll or color measurement. These results suggest that genetic improvement of carotenoid levels in lettuce is feasible.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3