Author:
Hodges D. Mark,Forney Charles F.
Abstract
Rapidly declining levels of ascorbate (vitamin C) have been associated with advancing senescence and postharvest quality loss in spinach (Spinacia oleracea L.). To further explore the association between ascorbate metabolism and senescence, two cultivars of spinach previously shown to differ in their postharvest senescence rates were grown under controlled conditions (18 °C, 14 light: 10 dark photocycle) and harvested 6 weeks after planting. Detached leaves of `Spokane F1' (relatively fast senescence rate) and `BJ412 Sponsor'(relatively slow senescence rate) were bagged and placed in the dark at 10 °C. Samples were removed on days 0, 7, 14, 21, and 28, and analyzed for activities of L-galactono-γ-lactone dehydrogenase (GLDH), ascorbate peroxidase (ASPX), ascorbate oxidase (AAO), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), and levels of ascorbate [reduced (AsA) and oxidized (DHA)] and malondialdehyde (MDA) (estimator of lipid peroxidation). Oxidative stress, as estimated by MDA levels, steadily increased in both spinach cultivars during storage, but increased more in `Spokane'than in `Sponsor'. GLDH activities peaked on day 14 for both cultivars and leveled off thereafter, while activities of ASPX, DHAR, and MDHAR declined during storage. ASPX activities were lower in `Spokane'than in `Sponsor'after day 21. No difference in AAO activities was noted between `Sponsor'and `Spokane'during storage. Total ascorbate concentrations declined in both cultivars on day 14 after which no further decreases were noted, while DHA/AsA ratios increased during storage. Early in the storage regime (days 0 and 7), ascorbate levels were lower in `Spokane'than in `Sponsor. GLDH activities may have increased as part of a strategy to maintain the ascorbate pool during escalating oxidative stress. However, decreased levels of ascorbate suggests that, even though ascorbate biosynthesis was increased, ascorbate was being degraded, possibly through hydrolysis of DHA to 2,3-diketogulonate. Initially lower levels of ascorbate (days 0 and 7) and lower activities of ASPX (day 28) in `Spokane' may have resulted in comparatively greater susceptibility of this cultivar to oxidative stress than `Sponsor'.
Publisher
American Society for Horticultural Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献