Fruit Size Affects Physiological Attributes and Storage Disorders in Cold-stored ‘Royal Gala’ Apples

Author:

Lee Jinwook,Mattheis James P.,Rudell David R.

Abstract

‘Royal Gala’ apple [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] fruit can be susceptible to the development of postharvest disorders such as flesh breakdown and cracking (splitting) during and after cold storage. The objective of this research was to investigate fruit size and 1-methylcyclopropene (1-MCP) treatment effects on fruit physiological attributes and incidence and severity of storage disorders in ‘Royal Gala’ apples held in cold storage. In 2011, fruit segregated at harvest into two groups based on size (120 to 175, 250 to 350 g/fruit) were stored in air at 0.5 °C for 6 months and then at 20 °C for 7 days. In 2012, fruit were sorted into four groups (less than 200, 200 to 240, 241 to 280, and greater than 280 g/fruit), treated with 0 or 1 μL·L−1 1-MCP for 12 hours, and then stored in air at 0.5 °C for 3 or 6 months. Storage disorders were only detected at 6 months, regardless of 1-MCP treatment. In both control and 1-MCP-treated fruit, flesh breakdown incidence increased with fruit size, whereas severity was less associated with size. The progression of flesh breakdown developed in overall cortex tissue of control fruit but only detected in the stem-end tissue of 1-MCP-treated fruit. Internal ethylene concentration (IEC) decreased and CO2 production increased with increased fruit weight; however, 1-MCP-treated fruit had low IEC regardless of weight. Cortex tissue lightness (L*) increased with fruit size irrespective of tissue localization (stem end, equatorial, calyx end) at harvest. During 6 months’ storage, L* decreased with increased fruit size in controls but not 1-MCP-treated fruit. Fruit fresh weight loss increased with fruit size and storage duration, more so in controls when compared with 1-MCP-treated fruit. Furthermore, fruit circumference increased during storage with fruit size only for control fruit. These physical changes are associated with susceptibility of large fruit to flesh breakdown more so than small fruit. Reduced flesh breakdown incidence, progression of symptoms from the stem end into the cortex, and symptom severity in 1-MCP-treated fruit may indicate flesh breakdown is related to fruit ripening and senescence.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3